
APRICOT 2005: Network
Management Workshop

Gaurab Raj Upadhaya
Dhurba Raj Bhandari

Tom Vest

RPSL / IRRd / IRRToolSET

Gaurab Raj Upadhaya
Packet Clearing House

gaurab@pch.net

RPSL – Routing Policy Specification Language

RPSL is Defined in RFC 2622
The best reference for RPSL is RFC 2650

RPSL Tutorial

Mark Prior
Australia

Agenda

Routing Policy
What is Routing Policy?
Why define one?

RPSL
What is RPSL?
Benefits of using RPSL
How to use RPSL.

Questions anytime!

What is Routing Policy

 Public description of the relationship
between external BGP peers

 Can also describe internal BGP peer
relationship

Routing Policy

 Who are my BGP peers
 What routes are

 Originated by a peer
 Imported from each peer
 Exported to each peer
 Preferred when multiple routes exist

 What to do if no route exists

Routing Policy Example

 AS1 originates prefix “d”
 AS1 exports “d” to AS2,

AS2 imports
 AS2 exports “d” to AS3,

AS3 imports
 AS3 exports “d” to AS5,

AS5 imports

Routing Policy Example (cont)

 AS5 also imports “d”
from AS4

 Which route does it
prefer?
 Does it matter?
 Consider case where

 AS3 = Commercial
Internet

 AS4 = Internet2

Why define a Routing Policy?

 Documentation
 Provides routing security

 Can peer originate the route?
 Can peer act as transit for the route?

 Allows automatic generation of router
configurations

 Provides a debugging aid
 Compare policy versus reality

What is RPSL?

 Object oriented language
 Development of RIPE 181
 Structured whois objects
 Describes things interesting to routing policy

 Routes
 AS Numbers
 Relationships between BGP peers
 Management responsibility

RFC 2622 - “Routing Policy Specification Language (RPSL)”

FOR MORE INFO...

Person, Role & Maintainer
Objects
 Maintainer objects used for authentication
 Person and role objects are for contact info

mntner: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [optional] [multiple] [inverse key]
upd-to: [mandatory] [multiple] [inverse key]
mnt-nfy: [optional] [multiple] [inverse key]
auth: [mandatory] [multiple]
remarks: [optional] [multiple]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

Maintainer Object Example

mntner: MAINT-AS2764
descr: Maintainer for AS 2764
admin-c: MP151
upd-to: routing@connect.com.au
mnt-nfy: routing@connect.com.au
auth: PGPKEY-81E92D91
auth: PGPKEY-562C2749
auth: PGPKEY-8C1EEB21
mnt-by: MAINT-AS2764
changed: mrp@connect.com.au 20000725
source: RADB

Route Object

 Use CIDR length format
 Specifies origin AS for a route
 Can indicate membership of a route set

route: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
origin: [mandatory] [single] [primary/inverse key]
withdrawn: [optional] [single]
member-of: [optional] [single] [inverse key]
inject: [optional] [multiple]
components: [optional] [single]
aggr-bndry: [optional] [single] [inverse key]
aggr-mtd: [optional] [single]
export-comps: [optional] [single]
holes: [optional] [single]
remarks: [optional] [multiple]
cross-nfy: [optional] [multiple] [inverse key]
cross-mnt: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

Route Object Example

route: 203.63.0.0/16
descr: connect.com.au pty ltd
origin: AS2764
notify: routing@connect.com.au
mnt-by: MAINT-AS2764
changed: mrp@connect.com.au 19971027
source: RADB

AS Set

as-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
members: [optional] [single]
mbrs-by-ref: [optional] [single]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

 Collect together Autonomous Systems with shared
properties

 Can be used in policy in place of AS
 RPSL has hierarchical names

AS Set Object Example

as-set: AS2764:AS-CUSTOMERS:AS3409
descr: connect.com.au AS set
members: AS7632, AS9324
remarks: Autonomous systems that transit through AS3409
admin-c: CC89
tech-c: MP151
mnt-by: MAINT-AS2764
changed: mrp@connect.com.au 20001214
source: RADB

Route Set

 Collects routes together with similar properties

route-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
members: [optional] [single]
mbrs-by-ref: [optional] [single]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

Route Set Object Example

route-set: AS2764:RS-PROVIDER
descr: Connect's provider blocks
members: 202.21.8.0/21, 203.8.176.0/21, 203.63.0.0/16,
210.8.0.0/15, 210.10.0.0/16
admin-c: CC89
tech-c: MP151
notify: routing@connect.com.au
mnt-by: MAINT-AS2764
changed: mrp@connect.com.au 20000604
source: RADB

Autonomous System Object

 Routing Policy Description object
 Most important components are

 import
 export

 These define the incoming and outgoing
routing announcement relationships

Autonomous System Object
(cont)
aut-num: [mandatory] [single] [primary/look-up key]
as-name: [mandatory] [single]
descr: [mandatory] [multiple]
member-of: [optional] [single] [inverse key]
import: [optional] [multiple] [inverse key]
export: [optional] [multiple] [inverse key]
default: [optional] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [mandatory] [multiple] [inverse key]
remarks: [optional] [multiple]
cross-nfy: [optional] [multiple] [inverse key]
cross-mnt: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]

Simple “Documentation” Policy

 The simplest policy is strict customer/provider
relationship
 Customer accepts everything the provider sends
 Customer sends its routes to provider

aut-num: AS2
as-name: EXAMPLE-NET
descr: RPSL Example
import: from AS1 accept ANY
export: to AS1 announce AS2
admin-c: MANAGEMENT
tech-c: OPERATIONS
mnt-by: MAINT-AS2
changed: noc@example.net 20010101
source: TEST

Why use (RPSL) Policy?

 Consistent configuration between BGP
peers (peers & customers)

 Expertise encoded in the tools that
generate the policy rather than
engineer configuring peering session

 Automatic, manageable solution for
filter generation

Use of RPSL

 Use RtConfig to generate filters based
on information stored in our routing
registry
 Avoid filter errors (typos)
 Filters consistent with documented policy

(need to get policy correct though)
 Engineers don’t need to understand filter

rules (it just works :-)

References

 RPSL - RFC 2622
 ftp://munnari.oz.au/rfc/rfc2622.Z

 Using RPSL in Practice - RFC 2650
 ftp://munnari.oz.au/rfc/rfc2650.Z

 RAToolSet
 ftp://ftp.isi.edu/ra/RAToolSet

 RPSL Training Page
 http://www.isi.edu/ra/rps/training

 RADB
 http://www.merit.edu/radb

RPSL / IRRd / IRRToolSET

Gaurab Raj Upadhaya
Packet Clearing House

gaurab@pch.net

IRRD

 IRRd is a complete Internet Routing
Registry Server supporting indexing,
mirroring, whois queries, and email/TCP
updates.

 Developed by Merit and used for RADB

 Download from www.irrd.net

IRRd
• Source code and documentation for IRRd is available online at:
• http://www.irrd.net, current version is 2.2.3

• Also, a user guide is included as part of the distribution as irrd-
user.pdf.

• IRRd software is used to run Merit's RADB routing registry which can
be queried at whois.radb.net. For more info on the RADB, see
www.radb.net.

• To build and install the distribution, execute the following commands:
cd src
./configure
make
make install

• Binaries are installed in /usr/local/sbin by default.

Configuration
 Irrd has two ports

 5674 for user interface
 43 for listening (whois port)

 Configuration file is /etc/irrd.conf
 New installs don’t have any config

 Configuration language is similar to
Cisco CLI

Setting it up

• root@ktm # irrd &
• root@ktm # telnet localhost 5674

 … do the lab..

(if you put in the appropriate line in /
etc/services you can telnet differently)

IRRd Databases

 You can mirror an Internet Routing
Registry by contacting one of them

irr_database radb.db mirror_host 198.108.0.18 43

 You set up your own locally authorative
routing registry

irr_database local.db authoritative

 In either case, your database is in the
RPSL Format

/etc/irrd.conf
!
! Sample config file
!
! The cache directory
irr_directory /var/irr/databases/
debug server file-name /var/log/irrd.log
debug server syslog
debug submission file-name /var/log/irr-email.log
!
! The port of whois and IRRToolset connections
irr_port 43
!
! Make sure we don’t get overwhelmed
irr_max_connections 42
irr_database radb.db mirror_host 198.108.0.18 43
irr_database radb.db clean 172800
irr_database local.db authoritative
irr_database local.db clean 172800

IRRToolSET ?

• The "Internet Routing Registry Toolset" (IRRToolSet)
project was a activity of the RIPE NCC. This project
had been migrated from the USC Information
Sciences Institute, where it was developed in 1997-
2001 as the "Routing Arbiter ToolSet" (RAToolSet)
project. As the RAToolSet was no longer developed
by ISI but was used worldwide, the RIPE NCC
proposed to migrate this project to the RIPE NCC in
order to continue its development and support. The
original name of the project was preserved during
the transition process, but wa finally changed to
IRRToolSet.

IRRToolSet

 Recently
 The work on IRRToolSet has migrated to

ISC (internet systems consortium), the same
people who also maintain BIND and DHCPd

 Website is www.isc.org/irrtoolset/

 Hopefully we'll see some more development

Functionality

The project consists of the following tools:
• RtConfig

analyzes the routing policies registered in the
Internet Routing Registry (IRR) and produces router
configuration files;

• CIDRAdvisor
suggests safe cidr aggregates (i.e. those that do not
violate any policy constraints) that an Autonomous
System (AS) can advertise to each of its neighbour
ASes;

• peval
low level policy evaluation tool that can be used to write router configuration
generators;

• prtraceroute
prints the route and policy information packets take to a network host;

• prpath
enumerates a list of paths between Autonomous System and specified
destination;

• aoe
C++/Tcl/Tk program that displays the aut-num object for the specified
Autonomous System;

• roe
C++/Tcl/Tk program that lists the routes registered by the specified
autonomous system;

• rpslcheck(prcheck)
syntax-checks the aut-num object for Autonomous System registered in the

Internet Routing Registry (IRR).

How these stack up

 You can use the rtconfig to query the
irrd or any other Routing Registry on
the Internet

 You can create an network wide
Routing Registry for your network or
mirror a copy from one of the existing
IRR operator

• IRRd Synopsis
• irrd [-a] [-d database_dir] [-f conf_file] [-g group_name]
• [-l user_name] [-n] [-s password] [-u] [-v] [-w irr_port] [-x]

• Options
• -a Enable atomic transactions for database updates
• -d <path> Set database directory
• 5
• Chapter 3. Using IRRd
• -f <conf file> Specify the configuration file to use (default: /etc/irrd.conf)
• -g <group name> Drop priveleges to given group name
• -l <user name> Drop priveleges to given user name
• -n Do not daemonize
• -s <password> Set the UII password
• -u Don’t allow privileged commands
• -v Verbose logging, debug mode

IRRD Interface
• Interactive Interface

IRRd provides an interactive user interface that can be used to control various and
operational aspects of IRRd and show the current status of the daemon. The port
number can be specified in the configuration file. The default is TCP port 5673, or
the number associated with "irrd" in /etc/services. If a password is specified in the
configuration file, it must be supplied on login.

Unix shell-like redirection (or filename) is available for output. To edit a line, emacslike
line editing including ^a, ^b, ^e, ^f, ^d, ^k, ^u and ^c is available. To reuse a
previous line, tcsh-line history function is available by typing ^p and ^n.

IRRD Command Syntax
• The IRRd command language shares many similarities with the language used on
• Cisco Systems routers. Commands include:
• • show config -- view the configuration file
• • show version -- show the current version
• • show threads -- show the status of application threads
• • show connections -- show current TCP tool queries
• • reboot -- restart the daemon
• • help -- shows all commands available
• • exit -- leave the UII interface
• • mirror -- synchronize database with remote server
• • reload -- reload an IRR database file
• • show database -- show database status
• • dbclean -- synchronize IRR diskfiles with memory

• Demonstration of the syntax on IRRD installed earlier.

Updating your RR
» When using IRRd to run an authoritative database registry (as

opposed to simply mirroring other registries), it will be
necessary to configure the irr_rpsl_submit program to accept
e-mail and/or TCP based object submisssions. This program
performs RPSL syntax checking and maintainer authorization
verification and acts as a frontend for IRRd.

» The irr_rpsl_submit command is configured by command line
flag values, by setting configuration commands in the IRRd
configuration file, or by a combination of both.Command line
options override options set in the IRRd configuration file.

irr_rpsl_submit

• irr_rpsl_submit accepts e-mail updates and controls the process of entering and
modifyingdatabase data. irr_rpsl_submit can perform PGP authentication, the standard
authentication mechanisms of encrypted password and mail-from, syntax checking, and
standard RIPE/RPSL notifications.

• /etc/irrd.conf is the default. ’-l’ specifies the location for the acknowledgement and
transaction logs. The default is the ’irr_directory’ value from /etc/irrd.conf. ’-r’ gives the
PGP ring files location. The default is ~/.pgp in the user’s home directory. ’-s’ specifies
authoritative databases.

• irr_rpsl_submit will only allow updates to authoritative databases and will signal an
error for all others. The ’-s’ option may appear multiple times as necessary. ’-x’ stops
notifications from being sent. ’filename’ is the name of the input file. The
irr_rpsl_submit flag options override options in the IRRd configuration file.

• These options enable irr_rpsl_submit to reside on a remote machine from IRRd and to
operate without an IRRd configuration file

• To enable the irr_rpsl_submit to receive TCP submission, it is run through the
inetd daemon

IRRD Lab Work

 Creating a configuration for the first time
 Getting status reports from IRRD
 Setting up authentication
 Setting up administrative e-mail
 Learing the user interface

Updating RR using e-mail
Step One - Register One or More Maintainers

Step Two - Register AS and Policy Information

Step Three – Register Routes

Step Four – error checking and Overrides

(You can Refer to your RIR IRR examples)
(Now let's go and create some of our own)

Creating configuration
 You can use the information from the RR to

create configurations for your Cisco, Juniper
and other routers.

 You use the IRRToolSet and RtConfig to
achieve this functionality

 (Let's do the lab on creating the configs)

RtConfig

 Version > 4.0 supports RPSL
 Generates cisco configurations
 Contributed support for Bay’s BCC,

Juniper’s Junos and Gated/RSd
 Creates route and AS path filters.
 Can also create ingress/egress filters

Using RtConfig for static route
importation into BGP

import: protocol STATIC into BGP4
 from AS2170
 action community.append(2170:1);
 accept AS2170

 We use policy to filter static routes into BGP
 Allows for martian filtering
 Tagging routes with special communities
 Other filtering, such as filter host routes

 @RtConfig import/export <ASN-1> <rtr-1> <ASN-2> <rtr-2>

 <ASN-1> and <ASN-2> are AS numbers preceded with string

 "AS". For example, AS number 1 is specified as "AS1".

 <rtr-1> and <rtr-2> are ip addresses in prefix notation.

 For example, the router with address 128.9.128.9 is spec-

 ified as "128.9.128.9". This command instructs RtConfig

 to generate import filters where <rtr-1> in <ASN-1> is

 importing routes from <rtr-2> in <ASN-2>. The appropri-

 ate filters are generated by considering the import lines

 for <ASN-2>-<rtr-1>-<rtr-2> in the aut-num object for

 <ASN-1>.

RtConfig commands for static
import

RtConfig> @RtConfig set cisco_map_name = "STATIC-EXPORT"
RtConfig> @RtConfig static2bgp AS2170 0.0.0.0
!
no access-list 100
access-list 100 permit ip 203.17.185.0 0.0.0.0 255.255.255.0 0.0.0.0
access-list 100 permit ip 205.191.168.0 0.0.0.0 255.255.255.0 0.0.0.0
access-list 100 permit ip 210.8.207.176 0.0.0.0 255.255.255.240 0.0.0.0
access-list 100 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
no route-map STATIC-EXPORT
!
route-map STATIC-EXPORT permit 1
 match ip address 100
 set community 2170:1 additive
!
router bgp 2170
 redistribute static route-map STATIC-EXPORT

Customer Import Policy
import: {

from AS-ANY
action med=0;
accept ANY AND NOT { 0.0.0.0/0 };

} refine {
from AS-ANY

action community.append(2764:65408); pref=25;
accept community.contains(2764:3) AND NOT AS2764:RS-PROVIDER^-;

from AS-ANY
action community.append(2764:65408); pref=15;
accept community.contains(2764:4) AND NOT AS2764:RS-PROVIDER^-;

from AS-ANY
action community.append(2764:65408); pref=5;
accept community.contains(2764:5);

from AS-ANY
action community.append(2764:65408); pref=0;
accept ANY;

} refine {
from AS2764:AS-CUSTOMERS

accept PeerAS AND < P̂eerAS+$>;
from AS2764:AS-TRANSIT

accept AS2764:AS-CUSTOMERS:PeerAS AND <P̂eerAS+ AS2764:AS-CUSTOMERS:PeerAS+$>;
 }

RtConfig Configuration
Template

@RtConfig set cisco_map_first_no = 10
@RtConfig set cisco_map_increment_by = 10
@RtConfig set cisco_prefix_acl_no = 130
@RtConfig set cisco_aspath_acl_no = 130
@RtConfig set cisco_pktfilter_acl_no = 130
@RtConfig set cisco_community_acl_no = 30
@RtConfig set cisco_max_preference = 100
!
router bgp 2764
neighbor 203.63.122.193 remote-as 9313
neighbor 203.63.122.193 description On The Net
@RtConfig set cisco_map_name = "AS9313-EXPORT"
@RtConfig export AS2764 203.63.80.230 AS9313 203.63.122.193
@RtConfig set cisco_map_name = "AS9313-IMPORT"
@RtConfig import AS2764 203.63.80.230 AS9313 203.63.122.193
!
end

cisco Configuration
! access-list 135 – customer routes
!
no ip as-path access-list 130
ip as-path access-list 130 permit ^(_9313)+$
!
no route-map AS9313-IMPORT
!
no ip community-list 32
ip community-list 32 permit 2764:3
!
route-map AS9313-IMPORT permit 20
 match as-path 130
 match community 32
 match ip address 135
 set local-preference 75
!
no ip community-list 33
ip community-list 33 permit 2764:4
!
route-map AS9313-IMPORT permit 30
 match as-path 130
 match community 33
 match ip address 135
 set local-preference 85

no ip community-list 34
ip community-list 34 permit 2764:5
!
route-map AS9313-IMPORT permit 40
 match as-path 130
 match community 34
 match ip address 135
 set local-preference 95
!
route-map AS9313-IMPORT permit 50
 match as-path 130
 match ip address 135
 set local-preference 100
!
router bgp 2764
neighbor 203.63.122.193 route-map AS9313-IMPORT in
!
end

Problems?

 Policy can easily get very complex and
result in even more complex router
configuration

 Line limit on cisco AS path filters (need
to be careful when using as-sets)

 ISI/Qwest whois server doesn’t cope
with the RPSL v2 community format

References
– RFC-1786: RIPE-181
– RIPE-181 (RIPE-81++) started it all. This document describes the original database formats used by the RIPE

NCC for the storage of routing policy in its database.

– RFC-2622: Routing Policy Specification Language
– The current routing language used by IRRd.

– RFC-2650: Using RPSL in Practice
– A tutorial that gives many examples of common policies in RPSL.

– RFC-2726: PGP Authentication for RIPE Database Updates
– How to store PGP public keys within the RIPE database format,and by extension, the RPSL database

– RFC-2725: Routing Policy System Security
– The RPSL-Security specification provides a mechanism for delegating objects and providing a rooted (top-down)

delegation and authentication model for objects such as AS numbers, address space and routes. Status: IRRd
does not yet support this RFC.

– RFC-2769: Routing Policy System Replication
– This mechanism provides for a more robust and authenticated mechanism of distributing data from registry to

registry.Status: IRRd does not yet support this RFC.

RPSL / IRRd / IRRToolSET

Gaurab Raj Upadhaya
Packet Clearing House

gaurab@pch.net

Using IRR for BGP

 http://www.ripe.net/db/rpsl/bgp-conf-irr.html

